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Remarks
• 𝑔𝑥𝑘 ∈ 𝜕𝑓(𝑥𝑘) is the subgradient computed at 𝑥𝑘. 

• Same guarantees as classic and projected GD.
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Stochastic Gradient Descent (SGD)
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Remarks
• 𝛼𝑘 is called the stepsize. Intuitively the smaller, the slower the algorithm.
• 𝛼𝑘 must depend on 𝑘 (vanishing to talk about convergence).
• 𝑣𝑘 and moreover 𝑥𝑘 are random vectors!
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Remarks

• 𝛼𝑘 scales as 
1

𝑘
and is vanishing to talk about convergence.

• For 𝑇 = Θ
1

𝜖
log

1

𝜖
we get error 𝜖.

• Rakhlin, Shamir & Sridharan (2012) derived a convergence rate 
in which the log 𝑇 is eliminated for a variant.
• Shamir & Zhang (2013) shown theorem above for last iterate 𝑥𝑇!
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Law of total expectation … Tower property!
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Analysis of SGD (general)
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Remarks

• 𝑎 scales as 
1

𝑘
and is vanishing to talk about convergence but fixed!

• For 𝑇 = Θ
1

𝜖2
we get error 𝜖.
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Example: Coordinate Descent 
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Remarks
• Similar guarantees with GD as long as each coordinate is taken often. 
• If coordinate 𝑖 is chosen uniformly at random, then instantiation of ?.



Conclusion

• Introduction to Subgradients and SGD.

– Same guarantees as for differentiable functions.

– SGD has rate of convergence O
1

𝜖
ln

1

𝜖
for 

𝜇-convex.

– Next Lecture we will see examples related to MLE.

• Next week we will talk about online 
learning/optimization!
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